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The Zeros of Regular Coulomb Wave Functions 
and of Their Derivatives 

By Yasuhiko Ikebe 

Abstract. A simple and efficient numerical method for computing the zeros of 
regular Coulomb wave functions and of their derivatives is presented. The method is 
based on the characterization of the zeros of the functions and of their derivatives in 
terms of eigenvalues of certain compact matrix operators. A similar approach has been 
reported for the computation of the zeros of Bessel functions and of their derivatives 

[91, [141. 

1. Introduction. In [9], Grad and Zakrajs6k reported a matrix equation ap- 
proach for the numerical computation of the zeros of Bessel functions Jm(x) for m > 

0. In [14], the method was further extended to include the zeros of Jm(x) of any 
real order m and of their derivatives J(P)(x) with certain restrictions on m and p. In 
this paper, we shall show that the same approach is applicable for determining the 
zeros of regular Coulomb wave functions and of their first derivatives. 

The regular Coulomb wave function FL (m, p) of order L, L = 0, 1, 2,... , with a 
real parameter 7, -oo < i7 < oo, gives one independent solution of the Coulomb wave 
equation 

(1.1) ~~~d2w? 2-h L(L +1)] 0 >0 (l.l) d W ~~~+ [t _ = O, p > O, 
dp2 L ' 2 

which is important in nuclear physics. We shall not be concerned with the irregular 
Coulomb wave function GL(m7, p), which gives a second solution of(1.1). As in the 
case of Bessel functions [9], [141, the method is based on the characterization of the 
zeros in terms of eigenvalues of certain matrix operators acting in 12, i.e., the Hilbert 
space of all square-summable real sequences with norm defined by 

(1.2) 2 I/ 

where the symbol T denotes the transpose operation. See Sections 2-3. A numerical 
method is derived and justified in Section 4. Actual numerical examples are presented 
in Section 5. 

While numerical methods for computing the values of FL(mq, p) for a given set 
of values, L, i?, and p, are well known ([3] -[81, [10] -[13]), it appears that numer- 
ical methods for computing the zeros of F,(??, p) and of dF,,(?, p)/dp for a given pair 
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of L and 77 has not received sufficient attention. One could, of course, compute the 
zeros of FL(??, p) by using any one of standard root-finding methods, such as the 
method of bisection, the method of the false position, or the secant method, since the 
values of FL(??, p) can be readily computed using a standard method. However, such 

techniques require the advance knowledge of a fairly small interval containing a zero 
of the function, and moreover, the zeros of the function are found only one at a time. 
The method presented in this paper will obviate both of these difficulties. 

For recent developments in the numerical methods for the evaluation of Coulomb 

wave functions, see [ 1 ]-[8], [10]-[ 13], and [ 17] and the references given there. 

2. The Zeros of Regular Coulomb Wave Functions. For a given pair of numbers 

77 and p, the functions Fk(7, p), k = 0, 1, 2, . .. , can be characterized as a minimal 

solution of the linear difference equation 

(k + 2) (k?1)2? 2uk - (2k + 3) + (k +l 1k+ 2 j 

(2.1) 
+ (k + 1)k+ 2)2+ 2uk+2 =0. 

See [7, p. 63]. Dividing through by 2k+ 3 (k + 1)(k + 2) and making the defini- 

tions 

(2.2) Wk = 2k+ 1 hFk(7, p), k = 0, 1, 2, .... 

(2.3) ek - ~~1 (k?+1)2?+ 72 
k k + I (2k + 1)(2k + 3) k 

(2.4) dk = k(k + 1) ' 

we obtain, for k= 0, 1, 2, ... . 

(2.5) ekWk - (,dk+l + 1/P)Wk+1 + ek+l Wk+2 =0 

Writing this in matrix form for k = L, L + 1, . . , we have 

(2.6) (T,]-PI) ''=0 

where 

?dL + 1eL+1 
0 

eL + 1 -dL+2 eL+2 

(2 .7) TL J eL+2 -'rdL+3 

Lw O 

which is real, symmetric and tridiagonal, and where 
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(2.8) p= [WL+1, WL+2, **IT, X =[-eLWL, 0,, .... ]T. 

By [7, Theorem 2.3, P. 35], 

2k Wk+l 2k 2+3 Fk+1 (k ? ?)i 

P Wk P 2k1 Fk 

This means that the vector o is in the space 12. Also, 

2k.ek 1I (k -oo) and k2dk > 1 (k >oo). 

This means that the sum of the squares of all elements of TL r is finite. Hence TL", 
can be regarded as a compact operator in 12. It is also selfadjoint (real symmetric). 

THEOREM 2.1 (ZEROS OF FL(??, p)). Let L and r1 be given. Then p $ 0 is a zero 
of FL(r?, p) if and only if 1/p is an eigenvalue of TL X,. 

Proof. If p $ 0 is a zero of FL(??, p), then the vector E in (2.6) vanishes. Since 

FL +1 (, p) $ 0, the vector o does not vanish. Then (2.6) implies 1/p is an eigenvalue 
of TLX,,. Conversely, let X be a nonzero eigenvalue of TLX,,. We define p by X = 1/p. 

Let [WL+l, WL+2, ... ] 12 be an eigenvector of TL Sr corresponding to X. Define 

Fk for k=L,L+1,... by 

FL =O0 

(2.9) 2k + =Wk k=L+1,L+2,.... 

Then Fk(75, p) and Fk satisfy the same difference equation (2.1) for k = L, L + 1, . 
We have Fk > O as k oo, since Wk 0 as k oo. This means that the Fk, k= 

L + 1, L + 2, . .. , represent a minimal solution of (2.1). Since any pair of minimal 
solutions of (2.1) is linearly dependent [7, p. 25], it follows that there exists a constant 
c $ 0 such that 

(2.10) F(,P)=cF=, k=L,L + 1,. 

In particular, for k = L, FL(75, p) = cFL = 0. 
COROLLARY 2.1. The zeros of FL(775 p) are real. 

Proof. This follows from the selfadjointness of TL X,. 
Remark 2.1. Consider the homogeneous equation 

(2.11) TLEp=O. 

Writing po [WL + 1, WL + 2, . .. ] T, this is equivalent to 

(2.12) -?dL+1WL+1 +eL+l WL+2 =0, 
ekWk r-dk+1Wk+l + ek+lWk+2 = 0, k >L + 1. 

Assume 77 $ 0. Then (see, e.g., [7, pp. 34-35]), there exists an independent solution 
of (2.12) such that 

e k W 1 
?dk Wk Ia o 
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i.e., 

k Wk+1 
7 W 2 as k oo. 

This shows that, if n :$ 0, then (2.11) has a nontrivial solution in 12. If iq = 0, then 

(2.11) reduces to 

WL+2 =0, 
(2.13) L+ 

ekWk + ek+l Wk+2 = 0, k > L + 1. 

It follows that (2.11) has only the trivial solution in 12 if 77 = 0, since ek > ek+ 1. 
Remark 2.2. Let D diag[-1, 1,-i1, 1, ...]. Then D2 = I and 

?dL + 1 eL+l 0 

(2.14) (TL,) eL+1 ndL+2 eL+2 TL,. 

eL+2 7?dL +3 

0 

This shows that - TL Xr is similar to TL_,-. Consequently, the positive zeros of FL(-r?, p) 

are given precisely by the absolute values of the negative zeros of FL(ri, p). Hence, by 

solving an eigenvalue problem (2.6), the positive zeros of FL(17, p) and of FL(-,q, p) 

are computed simultaneously. 
Remark 2.3. If s7 = 0, then 

FL (X, p) = 
FL (O, P) = ' 

L + (1 /2)(P)- 

Hence, the positive zeros of FL(O, l) are identical with those of JL +( 1 /2)(P), i.e., the 

Bessel function of order L + (1/2). In particular, for L = 77 = 0, 

FO(0, p) = 
2p J1 2(p) = sin p. 

3. The Zeros of the First Derivative of Regular Coulomb Wave Functions. We 

retain the notation used in Section 2. It is known that, for L = 0, 1, 2, . . . 

(3.1) (L +) 
d [(L 1) + 7? FL - (+1)2+r2FL+l. 

Hence, dFLIdp = 0 if and only if 

(3.2) [(L +1) + 71 FL - (L +1)2+ii2 FL+ I = 0. 

This can be written as 

_7/ +2 +L leW (3.3) [(2)+] L?WL?V e W0 
(L + p 2 + IL L+1I L L+1 
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If we consider (3.3) together with the difference equation (2.5), we obtain the follow- 
ing matrix equation 

(3.4) (TL,1 P7 I)< 0 

where 

(L+ 1)2 L + L 

L2+ eL -? L + 1 e 

(3.5) L eL 1dL+l eL+l 
T = 

eL+ I -dL+2 eL+2 

0 eL+2 

which is real, symmetric, and tridiagonal, and where 

(3.6) + 
1I WL' WL+ 1WL+2 2 .]. 

Just like TL r7 in Section 2, TL 7 is a compact operator in 12. 

THEOREM 3.1 (ZEROS OF dFLIdp). Let L and q1 be given. Then p = 0 is a zero 

of dFL(jq, p)/dp if and only if I/p is an eigenvalue of TL ,r. 
The proof is similar to that of Theorem 2.1 and is omitted. 

COROLLARY 3.1. The zeros of dFLIdp are real. 

Remark 3.1. As for TL , 0 is an eigenvalue of TL, when 17 # 0, and is not 

when 17 = 0. 

Remark 3.2. The positive zeros of dFL(-17, p)/dp are given precisely by the 

absolute values of the negative zeros of dFL(77, p)/dp. See Remark 2.2. 

4. The Numerical Procedure. A numerical method for computing the zeros of 

FL(17, p) and of dFL(17, p)/dp for a given pair of numbers L and 17 is now presented. 
(I) Zeros of FL(77, p). Let n be a positive integer. Let T(n) denote the princi- L,ri 

pal n x n submatrix of TL , We shall refer to TLn) as the truncated matrix of order 

n. It is known that the nonvanishing zeros of FL (r, p) are simple. Hehce, by The- 

orem 2.1, all nonzero eigenvalues of TL are simple. By the Sturm-sequence theorem 

[16, pp. 299-302], the eigenvalues of T ) are also simple. Let X_i <&X-2 < ... < 

0 <... < X2 < X1 be a complete enumeration of the nonzero eigenvalues of TL r. 
Let 1(n) < (n) < .. . <0< < X(n) < X(n) be a complete enumeration of the 

eigenvalues of 1,0) The zeros of FL(17, p) are approximated by I /i4n), where 4(n) 0 L, r'k 

0. By [13, pp. 279-281], we have the following estimate for any k: 

I\kn) _ I < 
L, T- TL, (operator norm). 
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TABLE 1 

The least 5 positive zeros of FL (7i, p) correct to 10 figures 

L= 0 

.1 0 n = 1 X]=2 
711~. 

3.1415 92654 (00) 5.8141 15616 (00) 8.3956 70124 (00) 

6.2831 85307 (00) 9.4745 33918 (00) 1.2405 24258 (01) 

9.4247 77961 (00) 1.2941 65270 (01) 1.6110 44740 (01) 

1.2566 37061 (01) L.6323 24836 (01) 1.9676 31893 (01) 

1.5707 96327 (01) 1.9655 75668 (01) 2.3160 32851 (01) 

.i 
= 4_8 -9 = 16 

1.3219 26777 (01) 2.2323 33111 (01) 3.9766 16365 (01) 

1.7742 90736 (01) 2.7571 88361 (01) 4.6002 24064 (01) 

2.1815 35538 (01) 3.2182 80961 (01) 5.1369 31880 (01) 

2.5674 09274 (01) 3.6482 71962 (01) 5.6302 69889 (01) 

2.9404 17556 (01) 4.059123272 (01) 6.0964 36277 (01) 

L= 1 

=0 t] ]=2 

4.4934 09458 (00) 6.5665 70904 (00) 8.8510 65605 (00) 

7.7252 51837 (00) 1.0238 85720 (01) 1.2863 21977 (01) 

1.0904 12166 (01) 1.3711 33324 (01) 1.6569 69608 (01) 

1.4066 19391 (01) 1.7096 05052 (01) 2.0136 34835 (01) 

1.7220 75527 (01) 2.0430 62027 (01) 2.3620 89262 (01) 

Ti T= 4 I T]= 8 | nA 16 

1.3462 75189 (01) 2.2447 45611 (01) 3.9828 54985 (01) 

1.7986 76787 (01) 2.7696 05220 (01) 4.6064 63125 (01) 

2.2059 42254 (01) 3.2307 00483 (01) 5.143171234 (01) 

2.5918 29573 (01) 3.6606 93361 (01) 5.6365 09465 (01) 
2.9648 47623 (01) 4.0715 46094 (01) 6.1026 76029 (01)1 

The bound on the right-hand side of the last inequality converges to 0 as n 00, 

but the bound is usually too pessimistic. In practice, it is enough to observe the 
numerical convergence X(n) X,. 

(II) A similar procedure applies in the numerical computation of the zeros of 

dFj(q, p)Idp. Thus, if TLn) denotes the principal n x n submatrix of TL X, then the 
zeros of FL(i7, p) are approximated by I/v), where Xkn) represents an arbitrary non- 
vanishing eigenvalue of INn). 
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TABLE 2 

The least 5 positive zeros of dFL(n, p)/dp correct to 10 figures 

L= 0 

ii=O 0i-' 

1.5707 96327 (00) 3.6574 10638 (00) 5.8950 85350 (00) 

4.7123 88980 (00) 7.6676 77779 (00) 1.0436 57415 (01) 

7.8539 81634 (00) 1.1216 79693 (01) 1.42 71 84702 (01) 

1.0995 57429 (01) 1.4637 06308 (01) 1.7901 00351 (01) 

1.4137 16694 (01) 1.7992 37821 (01) 2.1423,16801 (01) 

nz4 1= 8 z16 

1.025063372 (01) 1.8732 88298 (01) 3.536434308 (01) 

1.5533 79997 (01) 2.502084729 (01) 4.2982 88977 (01) 

1.9800 33171 (01) 2.9907 84803 (01) 4.8727 92458 (01) 

2.3756 58102 (01) 3.4350 24172 (01) 5.3860 63072 (01) 

2.7546 82974 (01) 3.8548 53936 (01) 5.8650 08314 (01) 

L= 1 

2.7437 07270 (00) 4.3875 03851 (00) 6.3463 01319 (00) 

6.1167 64264 (00) 8.4269 47553 (00) 1.0893 42998 (01.) 

9.3166 15629 (00) 1.1984 04802 (01) 1.4730 51307 (01) 

1.2485 93737 (01) 1.5408 41197 (01) 1.8360 66699 (01) 

1.5643 86611 (01) 1.8766 26782 (01) 2.1883 47826 (01) 

Ti = 4 11 = 8 il = 16 

1.0493 61433 (01) 1.8856 95887 (01 ) 3.5426 72491 (01) 

1.5777 38308 (01) 2.5144 99607 (01) 4.3045 27833 (01) 

2.0044 30293 (01) 3.0032 03073 (01) 4.8790 21673 (01) 

2.4000 71979 ,(01) 3.4474 44675 (01) 5.3923 02541 (01) 

2.7791 08373 (01) 3.8672 76073 (01) 5.8712 47981 (01) 

5. Examples. Some of our computational results follow. 
Tables 1 and 2 show the first five positive zeros of FL(r), p) and of dFL(q, p)/dp 

correct to 10 decimal figures, for L = 0 and 1 and i1 = 0, 1, 2, 4, 8, and 16. In 

practical applications of the regular Coulomb wave functions, i is usually positive. 
Table 3 shows the first positive zeros of FL (i, p) and of dFL (q, p)/dp correct 

to 10 decimal figures for L = 1 and q = - 1, as an example of the case of negative iq. 

This requires no new computations as stated in Remark 2.2. 
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TABLE 3 

The least 5 positive zeros of F1(- 1, p) and of dF1 (- 1, p)/dp, 
correct to 10 figures 

F1 (-l, p) dFI (-l$p)/dp 

2.9661 44623 (00) 1.6804 42277 (00) 
5.6619 20828 (00) 4.3025 20276 (00) 
8.4788 75692 (00) 7.0635 49724 (00) 
1.1368 94161 (01) 9.9196 30533 (00) 
1.4306 33125 (01) 1.2834 75614 (01) 

TABLE 4 

The number of computed positive zeros of FL(n, P) 
correct to 10 or more figures 

L=0 L= 1 

n 32 n =64 n = 128 n = 32 n = 64 - n-128 

16 0 5 21 0 5 21 
8 1 8 20 1 9 26 
4 3 11 29 3 11 29 
2 4 13 31 4 13 31 
1 5 14 33 5 14 32 

0 6 15 34 6 15 34 

-1 7 16 36 7 15 35 
-2 8 17 37 7 17 37 
-4 9 19 39 8 19: 39 
-8 11 22 43 10 21 42 

-16 | r 13 25 47 12 24 47 

TABLE 5 

The number of computed positive zeros of dFL(?, p)/dp 
correct to 10 or more figures 

L = 0 L 1 

n 32 n= 64 n =128 n= 32 n= 64 = 128 

16 0 5 21 0 5 21 

8 2 9 26 2 9 26 

4 3 11 30 3 11 30 

2 4 12 32 5 12 32 
1 5 14 33 5 14 33 

0 6 15 35 6 15 34 

-1 7 17 36 7 16 36 
-2 8 18 37 8 17 37 

-4 9 19 40 9 19 39 
-8 11 22 43 11 21 42 

-16 13 25 48 12 25 47 

=~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f: =00; 
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Tables 4 and 5 show how the number of computed positive zeros of FL(i?, p) 
and of dFj(rj, p)/dp, correct to 10 or more figures, depends on L, 77, and n, where 
n denotes the order of the truncated matrices T(n) or TP(n) (see Section 4). For in- 

L,i7 L,i7 
stance, Table 4 indicates that for L = 1 and q = 1 the use of the truncated matrix of 
order n = 64 produces the first 14 positive zeros of Fj(rj, p), correct to 10 or more 
significant figures. The number was determined by comparing the computed zeros 
for successive values of n. 

The computations were done on the CDC 6600/6400 system at The University 
of Texas at Austin, using single-precision (net 48-bit) floating-point arithmetic 
(FORTRAN REAL arithmetic). For the computation of the eigenvalues of real sym- 
metric tridiagonal matrices, the FORTRAN subroutine IMTQLI in EISPACK [16] was 
used. The computing time (the CDC 6600 central processor time) depends on n. 
About 0.86 seconds were needed for n = 64, 2.0 seconds for n = 128, and 6.6 sec- 
onds for n = 256. 

Note. In the above tables, the numbers appearing in parentheses represent 
the exponent relative to base 10. For instance, 1.321926777 (01), i.e., the first 
positive zero of FL(m, p) for L = 0 and 71 = 4 (Table 1), means 1.321926777 x 101. 
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